

- 19. Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$
- a) by showing each side is a subset of the other side.
- b) using a membership table.
- 21. Show that if A and B are sets, then
- a) $A B = A \cap \overline{B}$.
- b) $(A \cap B) \cup (A \cap \overline{B}) = A$.
- 30. Draw the Venn diagrams for each of these combinations of the sets A, B, C and D.
- a) $(A \cap B) \cup (C \cap D)$
- b) $\bar{A} \cup \bar{B} \cup \bar{C} \cup \bar{D}$
- c) $A (B \cap C \cap D)$
- 53. Let $A_i = 1,2,3,...,i$ for i = 1,2,3,... Find
- a) $\bigcup_{i=1}^n A_i$.
- b) $\bigcap_{i=1}^n A_i$.

- 2. Determine whether f is a function from Z to R if
- a) $f(n) = \pm n$.
- b) $f(n) = \sqrt{n^2 + 1}$.
- c) $f(n) = 1/(n^2 4)$.
- 3. Determine whether f is a function from the set of all bit strings to the set of integers if
- a) f(S) is the position of a 0 bit in S.
- b) f(S) is the number of 1 bits in S.
- c) f(S) is the smallest integer i such that the i th bit of S is 1 and f(S) = 0 when S is the empty string, the string with no bits.
- 8. Find these values.
- a) [1.1]
- b) [1.1]
- c) [-0.1]
- d) [-0.1]
- e) [2.99]
- f) [-2.99]
- g) [½ + [½]]
- h) [[½] + [½] + ½]
- 23. Determine whether each of these functions is a bijection from R to R.
- a) f(x) = 2x + 1
- b) $f(x) = x^2 + 1$
- c) $f(x) = x^3$
- d) $f(x) = (x^2 + 1)/(x^2 + 2)$
- 30. Let S = -1,0,2,4,7. Find f(S) if
- a) f(x) = 1.
- b) f(x) = 2x + 1.
- c) f(x) = [x/5].
- d) $f(x) = [(x^2 + 1)/3]$.
- 53. Show that if x is a real number and n is an integer, then
- a) x < n if and only if |x| < n.
- b) n < x if and only if n < [x].

- 10. Find the first six terms of the sequence defined by each of these recurrence relations and initial conditions.
- a) $a_n = -2a_{n-1}$, $a_0 = -1$
- b) $a_n = a_{n-1} a_{n-2}$, $a_0 = 2$, $a_1 = -1$
- c) $a_n = 3a_{n-1}^2$, $a_0 = 1$
- d) $a_n = na_{n-1} + a_{n-2}^2$, $a_0 = -1$, $a_1 = 0$
- e) $a_n = a_{n-1} a_{n-2} + a_{n-3}$, $a_0 = 1$, $a_1 = 1$, $a_2 = 2$
- 11. Let $a_n = 2^n + 5 \cdot 3^n$ for n = 0,1,2,...
- a) Find a_0 , a_1 , a_2 , a_3 , and a_4 .
- b) Show that $a_2 = 5a_1 6a_0$, $a_3 = 5a_2 6a_1$, and $a_4 = 5a_3 6a_2$.
- c) Show that $a_n = 5a_{n-1} 6a_{n-2}$ for all integers n with $n \ge 2$.
- 12. Show that the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n=-3a_{n-1}+4a_{n-2}$ if
- a) $a_n = 0$.
- b) $a_n = 1$.
- c) $a_n = (-4)^n$.
- d) $a_n = 2(-4)^n + 3$.
- 18. A person deposits \$1000 in an account that yields 9% interest compounded annually.
- a) Set up a recurrence relation for the amount in the account at the end of $\,n\,$ years.
- b) Find an explicit formula for the amount in the account at the end of n years.
- c) How much money will the account contain after 100 years?
- 31. What is the value of each of these sums of terms of a geometric progression?
- a) $\sum_{j=0}^{8} 3 \cdot 2^{j}$
- b) $\sum_{j=1}^{8} 2^{j}$
- c) $\sum_{j=2}^{8} (-3)^j$
- d) $\sum_{i=0}^{8} 2 \cdot (-3)^{j}$

- 3. Determine whether each of these sets is countable or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
- a) all bit strings not containing the bit 0
- b) all positive rational numbers that cannot be written with denominators less than 4
- c) the real numbers not containing 0 in their decimal representation
- d) the real numbers containing only a finite number of 1 s in their decimal representation
- 4. Determine whether each of these sets is countable or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
- a) integers not divisible by 3
- b) integers divisible by 5 but not by 7
- c) the real numbers with decimal representations consisting of all 1 s
- d) the real numbers with decimal representations of all 1 s or 9 s
- 7. Suppose that Hilbert's Grand Hotel is fully occupied on the day the hotel expands to a second building which also contains a countably infinite number of rooms. Show that the current guests can be spread out to fill every room of the two buildings of the hotel.
- 15. Show that if A and B are sets, A is uncountable, and $A \subseteq B$, then B is uncountable.
- 22. Suppose that A is a countable set. Show that the set B is also countable if there is an onto function f from A to B.

6. Find a matrix **A** such that

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 1 \\ 4 & 0 & 3 \end{bmatrix} \mathbf{A} = \begin{bmatrix} 7 & 1 & 3 \\ 1 & 0 & 3 \\ -1 & -3 & 7 \end{bmatrix}.$$

7. Let A be an $m \times n$ matrix and let 0 be the $m \times n$ matrix that has all entries equal to zero. Show that A = 0 + A = A + 0.

10. Let A be a 3×4 matrix, B be a 4×5 matrix, and C be a 4×4 matrix. Determine which of the following products are defined and find the size of those that are defined.

- a) AB
- b) BA
- c) AC
- d) CA
- e) BC
- f) CB

20. Let

$$\mathbf{A} = \begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix}.$$

- a) Find A^{-1} . [Hint: Use Exercise 19.]
- b) Find A^3 .
- c) Find $(A^{-1})^3$.
- d) Use your answers to (b) and (c) to show that $(A^{-1})^3$ is the inverse of A^3 .

27. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Find

- a) A ∨ B.
- **b) A** ∧ **B**.
- c) A ⊙ B.

31. In this exercise we show that the meet and join operations are commutative. Let A and B be $m \times n$ zero-one matrices. Show that

a)
$$A \lor B = B \lor A$$
.

b)
$$B \wedge A = A \wedge B$$
.

Sample Tests 409

Chapter 2—Test 1

1. Let $A = \{a, c, e, h, k\}$, $B = \{a, b, d, e, h, i, k, l\}$, and $C = \{a, c, e, i, m\}$. Find each of the following sets.

- (a) $A \cap B$
- (b) $A \cap B \cap C$
- (c) $A \cup C$
- (d) $A \cup B \cup C$
- (e) A B
- (f) A (B C)

2. Prove or disprove that if A, B, and C are sets then $A - (B \cap C) = (A - B) \cap (A - C)$.

- **3.** Let f(n) = 2n + 1. Is f a one-to-one function from the set of integers to the set of integers? Is f an onto function from the set of integers to the set of integers? Explain the reasons behind your answers.
- **4.** Suppose that f is the function from the set $\{a, b, c, d\}$ to itself with f(a) = d, f(b) = a, f(c) = b, f(d) = c. Find the inverse of f.
- **5.** Find the values of $\sum_{j=1}^{100} 2$ and $\sum_{j=1}^{100} (-1)^j$.
- **6.** Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$. Find \mathbf{AB} and \mathbf{BA} . Are they equal?
- 7. Let $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Find the join, meet, and Boolean product of these two zero-one matrices.

Sample Tests 411

Chapter 2—Test 2

- **1.** Let A, B, and C be sets. Prove or disprove that $A (B \cap C) = (A B) \cup (A C)$.
- **2.** Consider the function $f(n) = 2\lfloor n/2 \rfloor$ from **Z** to **Z**. Is this function one-to-one? Is this function onto? Justify your answers.
- 3. Show that the set of odd positive integers greater than 3 is countable.
- **4.** Find $\sum_{j=1}^{100} 2j + 5$ and $\sum_{j=5}^{100} 3^j$.
- **5.** Prove or disprove that AB = BA whenever A and B are 2×2 matrices.